EasySegment

Bibliothek zur Segmentierung anhand von Deep Learning

Im Überblick
  • Nicht überwachter Modus: Training ausschließlich mit „guten“ Bildern zum Erkennen und Segmentieren von Anomalien und Defekten in neuen Bildern
  • Überwachter Modus: Erlernen eines Modells der Defekte zur besseren Genauigkeit von Segmentierung und Erkennung
  • Funktioniert mit jeder Bildauflösung
  • Unterstützt Datenaugmentation und Masken
  • Kompatibel mit CPU- und GPU-Verarbeitung
  • Umfasst die kostenlose Deep Learning Studio-Anwendung für die Erstellung von Datensätzen, Training und Evaluierung
  • Nur verfügbar als Teil des Deep-Learning-Pakets



Vergleichen Händler


Was ist Deep Learning?

Neuronale Netze sind Computersysteme, die biologische neuronale Netze des menschlichen Gehirns als Vorbild haben. Konvolutionale neuronale Netze (CNN – Convolutional Neural Network) sind eine Klasse künstlicher Deep-Learning-Netze, die vor allem für die Analyse von Bildern verwendet werden. Deep Learning nutzt große CNNs zur Lösung komplexer Probleme, die mit sogenannten konventionellen Computervision-Algorithmen schwierig oder unmöglich zu lösen sind. Deep-Learning-Algorithmen sind möglicherweise einfacher einzusetzen, da sie in der Regel anhand von Beispielen lernen. Der Anwender muss sich dabei keine Gedanken über die Klassifizierung oder Inspektion von Teilen machen. Stattdessen lernen sie in der anfänglichen Trainingsphase einfach dadurch, dass ihnen viele Bilder der zu inspizierenden Teile gezeigt werden. Nach erfolgreichem Training können sie zur Klassifizierung von Teilen oder Erkennung und Segmentierung von Defekten verwendet werden.


Wofür eignet sich EasySegment?
Wofür eignet sich EasySegment?

Deep Learning ist grundsätzlich nicht für Anwendungen geeignet, die präzise Messungen oder Einschätzungen erfordern. Es ist auch nicht empfehlenswert, wenn bestimmte Arten von Fehlern (wie falsch-negative) völlig inakzeptabel sind. Der nicht überwachte Modus von EasySegment ist gut für Aufgaben zur Erkennung und Segmentierung von Defekten, insbesondere, wenn Defektbeispiele schwer zu beschaffen zu. Deep-Learning-Tools funktionieren sehr gut mit Bildern von natürlichen oder gefertigten Objekten mit komplexen Oberflächenmustern (z. B. Holz, Stoff usw.), bei denen die Erkennung von Defekten mit konventionellen Machine-Vision-Algorithmen sehr schwierig ist. Darüber hinaus kann das „Lernen anhand von Beispielen“ von Deep Learning auch die Entwicklungszeit eines Computervision-Prozesses reduzieren.


Deep Learning Studio
Deep Learning Studio

In Open eVision ist die Anwendung „Deep Learning Studio“ kostenlos enthalten. Diese Anwendung hilft dem Anwender bei der Erstellung von Datensätzen sowie beim Trainieren und Testen des Deep-Learning-Tools. Für EasySegment ist in Deep Learning Studio ein Annotationstool integriert, sodass Vorhersagen in Ground-Truth-Annotationen umgewandelt werden können. Damit kann das Tool auch grafisch entsprechend den Performance-Anforderungen konfiguriert werden. Es kann beispielsweise nach dem Training ausgewählt werden, ob der Erkennungsrate von Defekten oder einer guten Erkennungsrate Vorrang gegeben werden soll.


Leistung
Leistung

Deep Learning erfordert generell und insbesondere in der Lernphase eine beträchtliche Verarbeitungsleistung. Das Deep-Learning-Paket unterstützt Standard-CPUs und erkennt automatisch Nvidia CUDA-kompatible GPUs im PC. Schon 1 GPU beschleunigt in der Regel den Lernprozess und die Verarbeitungsphasen um den Faktor 100.


Neo, ein neues, flexibles Lizenzsystem
Neo, ein neues, flexibles Lizenzsystem

  • Neo ist das neue Lizenzsystem von Euresys. Es ist zuverlässig, auf dem neusten Stand der Technik und jetzt unter Windows verfügbar.
  • Mit Neo können Sie auswählen, wo Ihre Lizenz aktiviert werden soll: auf einem Neo-Dongle oder in einem Neo-Softwarecontainer. Sie kaufen eine Lizenz und entscheiden später.
  • Neo-Dongles bieten eine robuste Hardware und die Flexibilität der Übertragung von einem PC auf einen anderen.
  • Neo-Softwarecontainer benötigen keine spezielle Hardware. Sie sind mit dem PC verknüpft, auf dem sie aktiviert wurden.
  • Im Lieferumfang von Neo ist der dedizierte Neo-Lizenzmanager in zwei Ausführungen enthalten: Als intuitive, benutzerfreundliche grafische Benutzeroberfläche und als Befehlszeilenschnittstelle zur einfachen Automatisierung der Neo-Lizenzverfahren.


Unüberwachter EasySegment-Modus
Unüberwachter EasySegment-Modus

EasySegment ist das Segmentierungstool des Deep-Learning-Pakets. EasySegment übernimmt die Erkennung und Segmentierung von Defekten. Es erkennt Teile mit Defekten und weist die Stelle im Bild sehr genau aus. Der unüberwachte Modus von EasySegment erarbeitet ein Modell von dem, was ein „gutes“ Beispiel ist (z. B. ein Beispiel ohne jegliche Defekte). Dies wird durch ein Training mit ausschließlich „guten“ Beispielen erreicht. Das Tool kann dann zur Klassifizierung von neuen Bildern als gut oder defekt und zur Segmentierung der Defekte in diesen Bildern verwendet werden. Durch das Training mit ausschließlich Bildern guter Beispiele kann der nicht überwachte Modus von EasySegment Inspektionen auch dann durchführen, wenn die Art des Defekts vorab nicht bekannt ist oder wenn defekte Beispiele nicht leicht verfügbar sind.


Datenaugmentation
Datenaugmentation

Deep Learning funktioniert durch Trainieren eines neuronalen Netzes, das lernt, Referenzbilder zu klassifizieren. Die Zuverlässigkeit dieses Prozesses hängt maßgeblich davon ab, wie repräsentativ und umfassend die Referenzbilder sind. Das Deep-Learning-Paket verwendet eine „Datenaugmentation“, bei der zusätzliche Referenzbilder erstellt werden, indem vorhandene Referenzbilder innerhalb programmierbarer Grenzen modifiziert werden (z. B. durch Verschieben, Drehen, Skalieren). Auf diese Weise kommt das Deep-Learning-Paket mit nur ein paar Hundert Trainingsbildern pro Klasse aus.


Beispieldatensatz: Stofffehlererkennung
Beispieldatensatz: Stofffehlererkennung

Unser Musterdatensatz „Stoff“ zeigt, wie Stofffehler mit dem unbeaufsichtigten EasySegment-Modus erkannt und segmentiert werden können, wobei nur wenige gute Muster für das Training und keine Kenntnisse über die Art der zu erwartenden Fehler erforderlich sind. Darüber hinaus kann der unüberwachte EasySegment-Modus verwendet werden, um die für den überwachten Modus erforderliche Annotation der erwarteten Segmentierung zu vereinfachen. Dazu werden die Ergebnisse des unüberwachten Modus überprüft und als Ground-Truth geprüft und importiert.


Entwickelt mit Unterstützung der technologischen Entwicklungsabteilung DG06
Entwickelt mit Unterstützung der technologischen Entwicklungsabteilung DG06


Überwachter EasySegment-Modus
Überwachter EasySegment-Modus

>EasySegment ist das Segmentierungstool des Deep-Learning-Pakets. EasySegment übernimmt die Erkennung und Segmentierung von Defekten. Es erkennt Teile mit Defekten und weist die Stelle im Bild sehr genau aus. Beim überwachten Modus von EasySegment erlernt ein Modell, was ein Defekt und was ein „gutes“ Teil in einem Bild ist. Dies erfolgt durch Training mit Bildern, die die erwartete Segmentierung ausweisen. Das Tool kann dann verwendet werden, um die Defekte in neuen Bildern zu erkennen und zu segmentieren. Der überwachte Modus in EasySegment erzielt eine höhere Genauigkeit, da die erwartete Segmentierung bekannt ist und so komplexere Defekte segmentiert werden können, als im nicht überwachten Modus.


Warum sollten Sie sich für das Deep-Learning-Paket von Open eVision entscheiden?
Warum sollten Sie sich für das Deep-Learning-Paket von Open eVision entscheiden?

  • Das Deep-Learning-Paket wurde speziell zum Analysieren von Bildern und insbesondere für Bildverarbeitungssysteme entwickelt, parametrisiert und optimiert.
  • Das Deep-Learning-Paket hat eine einfache API und der Anwender kann mit nur ein paar Codezeilen alle Vorteile der Deep-Learning-Technologien nutzen.
  • Testen Sie vor dem Kauf: Im Deep-Learning-Paket ist die kostenlose Anwendung „Deep Learning Studio“ für Trainng und Evaluierung enthalten.
EasyClassify, EasySegment and EasyLocate cannot be purchased separately. They are only available as part of the Deep Learning Bundle.
Laden Sie das Deep-Learning-Paket doch gleich heute herunter und testen Sie es mit Deep Learning Studio. Bei Fragen können Sie sich gerne an den Support von Euresys wenden.


Beispieldatensatz: Erkennung und Segmentierung von Fremdmaterialien
Beispieldatensatz: Erkennung und Segmentierung von Fremdmaterialien

Unser Beispieldatensatz „Kaffee“ zeigt, wie Fremdmaterialien in Produktionslinien mit dem überwachten EasySegment-Modus effizient erkannt und segmentiert werden können, selbst wenn Farbe und Textur der Fremdmaterialien dem Produkt von Interesse sehr ähnlich sind.


Deep Learning Bundle Feature Comparison
Deep Learning Bundle Feature Comparison


Software
Host PC Operating System
  • Windows 10 (64-bits)
  • Windows 8 (64-bits)
  • Windows 7 (64-bits)
APIs
  • Supported Integrated Development Environments and Programming Languages:
    • Microsoft Visual Studio 2008® SP1 (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2010® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2012® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2013® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2015® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2017® (C++, C#, VB .NET, C++/CLI)
Ordering Information
Product code - Description
Optional accessories
Presence Check

An-/Abwesenheitsprüfung

Die Graustufen-Analysefunktionen von EasyImage werden für einfache An-/Abwesenheitsprüfungen verwendet
Surface

Oberflächenanalyse

EasyImage wird zur Erkennung von Oberflächenfehlern verwendet und die Blob-Analysefunktionen von EasyObject können diese segmentieren und messen.
Assembly

Baugruppeninspektion

Code Verification

Code-Qualitätsüberprüfung für Etikettendruckmaschinen