Deep Learning Bundle

컨볼루션 신경망 기반 검사 라이브러리

주요 사양
  • EasyClassify 및 EasySegment 포함
  • 데이터 증강 및 마스크 지원
  • CPU 및 GPU 프로세싱과 호환
  • 데이터세트 생성, 교육 및 평가를 위한 무료 Deep Learning Studio 애플리케이션 포함



비교 구입처 안내


딥러닝이 무엇입니까?

신경망은 인간의 두뇌를 이루는 생물학적 신경망을 모방해 만든 컴퓨팅 시스템입니다. CNN(컨볼루션 신경망)은 딥 피드포워드(deep, feed-forward) 방식의 인공 신경망으로, 이미지를 분석하는 데 가장 널리 적용되고 있습니다. 딥러닝은 기존의 컴퓨터 비전 알고리즘으로 풀기 어렵거나 풀 수 없는 복잡한 문제를 풀기 위해 대규모 CNN을 사용합니다. Deep Learning 알고리즘은 대개 예제에 의해 학습하기 때문에 사용하기에 더 쉬울 수도 있습니다. 부품을 분류 또는 검사하는 방법을 사용자가 알 필요가 없습니다. 대신에, 이 알고리즘은 초기 학습 단계에서 검사 대상 부품의 표시된 많은 이미지에 의해 학습을 합니다. 성공적으로 학습을 마친 후 이 알고리즘을 이용해 부품을 분류하거나 결함을 감지하고 분할할 수 있습니다.


EasySegment 설명
EasySegment 설명

EasySegment는 Deep Learning Bundle의 분할 툴입니다. EasySegment는 결함 감지 및 분할을 수행합니다. 결함이 포함된 부품을 식별하고 그 결함이 이미지의 어떤 위치에 있는지 정확하게 구분합니다. 무감독 모드를 사용할 때 EasySegment는 모델의 “양호한” 샘플(즉, 아무 결함이 없는 샘플)이 무엇인지를 학습하는 방식으로 작동합니다. 이는 “양호한” 샘플의 이미지만을 학습하여 이루어집니다. 그런 다음, 이 도구를 이용해 새 이미지를 양호 또는 결함으로 분류하고 이러한 이미지들로부터 결함을 분할할 수 있습니다. 우수한 샘플의 이미지만으로 학습시킴으로써, EasySegment의 무감독 모드는 결함의 유형을 알고 있지 않은 경우나 결함 샘플이 준비되지 않은 경우에도 검사를 수행할 수 있습니다.


DG06 기술 개발 부서의 지원으로 개발
DG06 기술 개발 부서의 지원으로 개발


왜 Open eVision의 Deep Learning Bundle을 선택해야 합니까?
왜 Open eVision의 Deep Learning Bundle을 선택해야 합니까?

  • Deep Learning Bundle은 특히 머신 비전 애플리케이션을 위해 맞춤화되고, 매개변수화되었으며 이미지 분석에 최적화되었습니다.
  • Deep Learning Bundle은 단순한 API를 가지고 있으며 사용자는 몇 줄의 코드만으로 딥러닝 기술의 이점을 누릴 수 있습니다.
  • 구매 전 사용해 보기: Deep Learning Bundle에는 무료 Deep Learning Studio 교육 및 테스팅 애플리케이션이 포함되어 있습니다.
EasyClassify 및 EasySegment는 별도로 구매할 수 없습니다. 이 제품들은 Deep Learning Bundle의 일부로만 구입 가능합니다.
오늘 Deep Learning Studio를 사용해 Deep Learning Bundle을 다운로드하여 평가하고, 질문이 있으면 주저없이 Euresys의 지원 센터에 전화하십시오.


<a target="_blank" href="https://www.euresys.com/Products/Machine-Vision-Software/Open-eVision-Studio/Open-eVision-Studio"  >Deep Learning Studio</a>
Deep Learning Studio

Open eVision은 무료 Deep Learning Studio 애플리케이션을 포함합니다. 이 애플리케이션은 데이터세트를 생성할 때와 딥러닝 도구를 교육 및 테스팅하는 단계에서 사용자를 도와줍니다.


EasyClassify 설명
EasyClassify 설명

EasyClassify는 Deep Learning Bundle의 분류 툴입니다. EasyClassify 사용 시 사용자는 교육 이미지에 레이블만 붙이면 됩니다. 즉, 어떤 부품이 양호하고 어떤 부품이 불량하며 어떤 부품이 어떤 클래스에 속하는지만 알려주면 됩니다. 이 학습/교육 프로세스 후에 EasyClassify 라이브러리가 이미지를 분류할 수 있습니다. 주어진 이미지에 대해 이 분류 도구는 확률의 목록을 반환하여 이미지가 그것을 교육한 각 클래스에 속할 가능성의 정도를 보여줍니다. 예를 들어, 불량품을 양품과 따로 구분해야 하는 프로세스의 경우, EasyClassify는 각 부품이 양호한지 또는 불량인지와 함께 해당 확률을 반환합니다.


성능
성능

딥러닝에는 일반적으로 상당히 많은 처리 역량이 필요한데 특히 학습 단계에서 더 그렇습니다. Deep Learning Bundle은 표준 CPU를 지원하고 PC에 있는 Nvidia CUDA 호환 GPU를 자동으로 감지합니다. 대개 하나의 GPU가 학습 및 처리 단계를 100배 가속화합니다.


Software
Host PC Operating System
  • Windows 10 (64-bits)
  • Windows 8 (64-bits)
  • Windows 7 (64-bits)
APIs
  • Supported Integrated Development Environments and Programming Languages:
    • Microsoft Visual Studio 2008® SP1 (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2010® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2012® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2013® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2015® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2017® (C++, C#, VB .NET, C++/CLI)
Ordering Information
Product code - Description
Optional accessories
Presence Check

존재 여부 검사

EasyImage 회색조 이미지 분석 기능은 간단한 유/무 검사에 사용됩니다.
Surface

표면 분석

EasyImage는 표면 결함을 밝히는 데 사용되며, EasyObject의 블롭 분석 기능으로 이러한 결함을 구분하고 측정할 수 있습니다.
Code Verification

레이블 인쇄 기계의 코드 품질 검증